
 S. Bosch

 July 7, 2016

 Sieve Email Filtering: Invoking External Programs
 spec-bosch-sieve-pipe

Abstract

 The Sieve filtering language (RFC 5228) is explicitly designed to be
 powerful enough to be useful yet limited in order to allow for a safe
 filtering system. The base specification of the language makes it
 impossible for users to do anything more complex (and dangerous) than
 write simple mail filters. One of the consequences of this security-
 minded design is that users cannot execute programs external to the
 Sieve filter. However, this can be a very useful and flexible
 feature for situations where Sieve cannot provide some uncommon
 functionality by itself. This document updates the Sieve filtering
 language with extensions that add support for invoking a predefined
 set of external programs. Messages can be piped to or filtered
 through those programs and string data can be input to and retrieved
 from those programs.

Table of Contents

 1. Introduction . 2
 2. Conventions Used in This Document 2
 3. Naming of External Programs 2
 4. Arguments for External Programs 3
 5. Action "pipe" . 4
 5.1. Interactions with Other Sieve Actions 4
 5.2. Interaction with the Sieve "copy" Extension 5
 6. Action "filter" . 5
 6.1. Interaction with Other Tests and Actions 6
 7. Action "execute" . 6
 8. Actions "filter" and "execute" as Tests 7
 9. Sieve Capability Strings 8
 10. Examples . 8
 10.1. Example 1 . 8
 10.2. Example 2 . 9
 10.3. Example 3 . 9
 10.4. Example 4 . 10
 11. Security Considerations 11
 12. References . 11
 12.1. Normative References 11
 12.2. Informative References 12
 Author's Address . 12

https://raw.githubusercontent.com/dovecot/pigeonh...

1 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 1]

 Sieve External Programs July 2016

1. Introduction

 This is an extension to the Sieve filtering language defined by RFC
 5228 [SIEVE]. It adds commands for invoking a predefined set of
 external programs. Messages can be piped to or filtered through
 those programs and, alternatively, string data can be passed to and
 retrieved from those programs.

 The Sieve language is explicitly designed to be powerful enough to be
 useful yet limited in order to allow for a safe server-side filtering
 system. Therefore, the base specification of the language makes it
 impossible for users to do anything more complex (and dangerous) than
 write simple mail filters. One of the consequences of this security-
 minded design is that users cannot execute external programs from
 their Sieve script. Particularly for server-side filtering setups in
 which mail accounts have no corresponding system account, allowing
 the execution of arbitrary programs from the mail filter can be a
 significant security risk. However, such functionality can also be
 very useful, for instance to easily implement a custom action or
 external effect that Sieve normally cannot provide.

 This document updates the Sieve filtering language with an extension
 to support invoking a predefined set of external programs using a set
 of new commands. To mitigate the security concerns, the external
 programs cannot be chosen arbitrarily; the available programs are
 restricted through administrator configuration.

 This extension is specific to the Pigeonhole Sieve implementation for
 the Dovecot Secure IMAP server. It will therefore most likely not be
 supported by web interfaces and GUI-based Sieve editors. This
 extension is primarily meant for use in small setups or global
 scripts that are managed by the system's administrator.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

 Conventions for notations are as in [SIEVE] Section 1.1, including
 use of the "Usage:" label for the definition of action and tagged
 arguments syntax.

3. Naming of External Programs

 An external program is identified by a name. This MUST not
 correspond to a file system path or otherwise have the ability to

https://raw.githubusercontent.com/dovecot/pigeonh...

2 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 2]

 Sieve External Programs July 2016

 point to arbitrary programs on the system. The list of valid program
 names MUST be limited, subject to administrator configuration.

 A program name is a sequence of Unicode characters encoded in UTF-8
 [UTF-8]. A program name MUST comply with Net-Unicode Definition
 (Section 2 of [NET-UNICODE]), with the additional restriction of
 prohibiting the following Unicode characters:

 o 0000-001F; [CONTROL CHARACTERS]

 o 002F; SLASH

 o 007F; DELETE

 o 0080-009F; [CONTROL CHARACTERS]

 o 2028; LINE SEPARATOR

 o 2029; PARAGRAPH SEPARATOR

 Program names MUST be at least one octet (and hence Unicode
 character) long. Implementations MUST allow names of up to 128
 Unicode characters in length (which can take up to 512 octets when
 encoded in UTF-8, not counting the terminating NUL), and MAY allow
 longer names. A server that receives a program name longer than its
 internal limit MUST reject the corresponding operation, in particular
 it MUST NOT truncate the program name.

 Implementations MUST NOT allow variables to be expanded into the
 program names; in other words, the "program-name" value MUST be a
 constant string as defined in [VARIABLES], Section 3.

4. Arguments for External Programs

 Optionally, arguments can be passed to an external program. The
 arguments are specified as a Sieve string list and are passed to the
 external program in sequence. Implementations SHOULD NOT impose any
 structure for these arguments; validity checks are the responsibility
 of the external program.

 However, implementations SHOULD limit the maximum number of arguments
 and the length of each argument. Implementations MUST accept at
 least 16 arguments with a length of at least 1024 octets each, and
 MAY allow more and longer arguments. Additionally, implementations
 MAY restrict the use of certain control characters such as CR and LF,
 if these can cause unexpected behavior or raise security concerns.

https://raw.githubusercontent.com/dovecot/pigeonh...

3 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 3]

 Sieve External Programs July 2016

 Note that implementations MAY also implicitly pass other data, such
 as the message envelope, to all executed programs avoiding the need
 to pass this information explicitly through program arguments.

5. Action "pipe"

 Usage: "pipe" [":try"] <program-name: string>
 [<arguments: string-list>]

 The "pipe" action executes the external program identified by the
 "program-name" argument and pipes the message to it. Much like the
 "fileinto" and "redirect" actions [SIEVE], this action is a
 disposition-type action (it is intended to deliver the message) and
 therefore it cancels Sieve's implicit keep (see Section 2.10.2 of
 [SIEVE]) by default.

 The specified "program-name" argument MUST conform to the syntax and
 restrictions defined in Section 3. A script MUST fail with an
 appropriate error if it attempts to use the "filter" action with an
 invalid, restricted or unknown program name. The optional
 "arguments" argument lists the arguments that are passed to the
 external program, as explained in Section 4.

 If the external program invoked by the "pipe" action fails to execute
 or finishes execution with an error, script execution MUST fail with
 an appropriate error (causing an implicit "keep" action to be
 executed), unless the ":try" tag is specified.

 When the ":try" tag is specified, the "pipe" instruction will attempt
 execution of the external program, but failure will not cause the
 whole Sieve script execution to fail with an error. Instead, the
 Sieve processing continues as if the "pipe" action was never
 triggered.

 If the execution of the external program is unsuccessful, the "pipe"
 action MUST NOT cancel the implicit keep.

5.1. Interactions with Other Sieve Actions

 By default, the "pipe" action cancels the implicit keep, thereby
 handing the responsibility for the message over to the external
 program. This behavior can be overridden using the Sieve "copy"
 extension [RFC3894] as described in Section 5.2.

 The "pipe" action can only be executed once per script for a
 particular external program. A script MUST fail with an appropriate
 error if it attempts to "pipe" messages to the same program multiple
 times.

https://raw.githubusercontent.com/dovecot/pigeonh...

4 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 4]

 Sieve External Programs July 2016

 The "pipe" action is incompatible with the Sieve "reject" and
 "ereject" actions [RFC5429].

5.2. Interaction with the Sieve "copy" Extension

 The Sieve "copy" extension [RFC3894] adds an optional ":copy" tagged
 argument to the "fileinto" and "redirect" action commands. When this
 tag is specified, these commands do not cancel the implicit "keep".
 Instead, the requested action is performed in addition to whatever
 else is happening to the message.

 When the "vnd.dovecot.pipe" extension is active, the "copy" extension
 also adds the optional ":copy" tag to the "pipe" action command.
 This has the familiar effect that when the ":copy" tag is specified,
 the implicit "keep" will not be canceled by the "pipe" action. When
 the "copy" extension is active, the syntax of the "pipe" action is
 represented as follows:

 Usage: "pipe" [":copy"] [":try"] <program-name: string>
 [<arguments: string-list>]

6. Action "filter"

 Usage: "filter" <program-name: string> [<arguments: string-list>]

 The "filter" action executes the external program identified by the
 "program-name" argument and filters the message through it. This
 means that the message is provided as input to the external program
 and that the output of the external program is used as the new
 message. This way, the entire message can be altered using the
 external program. The "filter" action does not affect Sieve's
 implicit keep.

 The specified "program-name" argument MUST conform to the syntax and
 restrictions defined in Section 3. A script MUST fail with an
 appropriate error if it attempts to use the "filter" action with an
 invalid, restricted or unknown program name. The optional
 "arguments" argument lists the arguments that are passed to the
 external program, as explained in Section 4.

 If the external program fails to execute, finishes execution with an
 error, or fails to provide message output, the "filter" action MUST
 terminate and leave the message unchanged. Depending on the severity
 of the error, implementations MAY subsequently fail the entire script
 execution with an appropriate error (causing an implicit "keep"
 action to be executed). If no error condition is raised, script
 processing continues, and prior or subsequent "filter" actions are
 not affected.

https://raw.githubusercontent.com/dovecot/pigeonh...

5 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 5]

 Sieve External Programs July 2016

6.1. Interaction with Other Tests and Actions

 A successful "filter" action effectively changes the message,
 potentially substituting the message in its entirety with a new
 version. However, actions such as "reject" and "vacation" that
 generate [MDN], [DSN], or similar disposition messages MUST do so
 using the original, unmodified message. Similarly, if an error
 terminates processing of the script, the original message MUST be
 used when doing the implicit keep required by Section 2.10.6 of
 [SIEVE]. All other actions that store, send, or alter the message
 MUST do so with the current version of the message. This includes
 the "filter" action itself.

 When a disposition-type action, such as "fileinto", "redirect" or
 "pipe", is encountered, the current version of the message is "locked
 in" for that disposition-type action. Whether the implementation
 performs the action at that point or batches it for later, it MUST
 perform the action on the message as it stood at the time, and MUST
 NOT include subsequent changes encountered later in the script
 processing.

 In addition, any tests done on the message and its parts will test
 the message after all prior "filter" actions have been performed.
 Because the implicit keep, if it is in effect, acts on the final
 state of the message, all "filter" actions are performed before any
 implicit keep.

 The "filter" action does not affect the applicability of other
 actions; any action that was applicable before the "filter"
 invocation is equally applicable to the changed message afterward.

7. Action "execute"

 Usage: "execute" [":input" <input-data: string> / ":pipe"]
 [":output" <varname: string>]
 <program-name: string> [<arguments: string-list>]

 The "execute" action executes the external program identified by the
 "program-name" argument. Input to the program can be provided using
 the ":input" or ":pipe" tags. If used in combination with the
 "variables" extension [VARIABLES], the "execute" action can redirect
 output from the program to the variable specified using the ":output"
 tag. This way, string data can be passed to and retrieved from an
 external program. The "execute" action does not change the message
 in any way and it never affects Sieve's implicit keep.

 The specified "program-name" argument MUST conform to the syntax and
 restrictions defined in Section 3. A script MUST fail with an

https://raw.githubusercontent.com/dovecot/pigeonh...

6 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 6]

 Sieve External Programs July 2016

 appropriate error if it attempts to use the "execute" action with an
 invalid, restricted or unknown program name. The optional
 "arguments" argument lists the arguments that are passed to the
 external program, as explained in Section 4.

 The ":input" and ":pipe" tags are mutually exclusive, because these
 both specify input that is passed to the external program.
 Specifying both for a single "execute" command MUST trigger a compile
 error. The ":input" tag specifies a string that is passed to the
 external script as input. This string may also contain variable
 substitutions when the "variables" extension is active. If instead
 the ":pipe" tag is specified, the current version of the message
 itself is passed to the external program. If the ":input" and
 ":pipe" tags are both omitted, no input is provided to the external
 program.

 The ":output" tag specifies the variable to which the output of the
 external program is to be redirected. If the ":output" tag is
 omitted, any output from the external program is discarded. The
 ":output" tag requires the "variables" [VARIABLES] extension to be
 active. The use of the ":output" tag for the "execute" action
 without the "variables" extension in the require line MUST trigger a
 compile error.

 The "varname" parameter of the ":output" tag specifies the name of
 the variable. It MUST be a constant string and it MUST conform to
 the syntax of "variable-name" as defined in [VARIABLES], Section 3.
 An invalid name MUST be detected as a syntax error. The referenced
 variable MUST be compatible with the "set" command as described in
 [VARIABLES], Section 4. This means that match variables cannot be
 specified and that variable namespaces are only allowed when their
 specification explicitly indicates compatibility with the "set"
 command. Use of an incompatible variable MUST trigger a compile
 error. The data actually stored in the variable MAY be truncated to
 conform to an implementation-specific limit on variable length.

 If the external program fails to execute or finishes execution with
 an error, the "execute" action MUST terminate and leave the contents
 of the variable referenced with ":output" unchanged. Depending on
 the severity of the error, implementations MAY subsequently fail the
 entire script execution with an appropriate error (causing an
 implicit "keep" action to be executed).

8. Actions "filter" and "execute" as Tests

 To simplify checking the successful invocation of the external
 program, the "filter" and "execute" actions can also be used as
 tests. As such, these will attempt to execute the requested external

https://raw.githubusercontent.com/dovecot/pigeonh...

7 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 7]

 Sieve External Programs July 2016

 program, and will evaluate to "true" if the program executed
 successfully and, if applicable, output was retrieved from it
 successfully. The usage as a test is exactly the same as the usage
 as an action: as a test it doubles as an action and a test of the
 action's result at the same time.

 For the "execute" test, a "false" result is not necessarily equal to
 actual failure: it may just mean that the executed program returned a
 "false" result, e.g. an exit code higher than zero on Unix systems.
 Note that any output from the external program is discarded when it
 yields a "false" result. Similarly, for the "filter" test, programs
 may return a "false" result to indicate that the message was not
 changed. In that case the Sieve interpreter will not replace the
 active message with an identical one, which is beneficial for
 efficiency. The exact semantics of these tests thus partly depends
 on the program being executed.

 To handle missing programs gracefully, implementations MAY let the
 "filter" and "execute" tests evaluate to "false" if an unknown
 program name is specified, instead of failing the script with an
 error as would happen if used as an action. In any other case and
 irrespective of whether the command is used as an action or a test,
 passing invalid arguments to the "filter" or "execute" commands, such
 as a syntactically invalid or restricted program name, MUST always
 cause the script to fail with an appropriate error.

9. Sieve Capability Strings

 A Sieve implementation that defines the "pipe" action command will
 advertise the capability string "vnd.dovecot.pipe".

 A Sieve implementation that defines the "filter" action command will
 advertise the capability string "vnd.dovecot.filter".

 A Sieve implementation that defines the "execute" command will
 advertise the capability string "vnd.dovecot.execute".

10. Examples

 The examples outlined in this section all refer to some external
 program. These programs are imaginary and are only available when
 the administrator would provide them.

10.1. Example 1

 The following example passes messages directed to a "user-
 request@example.com" address to an external program called "request-
 handler". The "-request" part of the recipient address is identified

https://raw.githubusercontent.com/dovecot/pigeonh...

8 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 8]

 Sieve External Programs July 2016

 using the "subaddress" extension [SUBADDRESS]. If the program is
 executed successfully, the message is considered delivered and does
 not end up in the user's inbox.

 require ["vnd.dovecot.pipe", "subaddress", "envelope"];

 if envelope :detail "to" "request"
 {
 pipe "request-handler";
 }

10.2. Example 2

 The following example copies messages addressed to a particular
 recipient to a program called "printer". This program sends the
 message to some printer. In this case it is configured for "A4" page
 format and "draft" quality using the two arguments. Irrespective of
 whether the message is printed or not, it is also always stored in
 the user's inbox through Sieve's implicit keep action (which is not
 canceled due to the specified :copy tag).

 require ["vnd.dovecot.pipe", "copy"];

 if address "to" "snailmail@example.com"
 {
 pipe :copy "printer" ["A4", "draft"];
 }

10.3. Example 3

 The following example translates a message from Dutch to English if
 appropriate. If the message's content language is indicated to be
 Dutch, the message is filtered through an external program called
 "translator" with arguments that request Dutch to English
 translation. Dutch messages are translated and filed into a special
 folder called "Translated". Other messages are delivered to the
 user's inbox.

 require ["vnd.dovecot.filter", "fileinto"];

 if header "content-language" "nl"
 {
 filter "translator" ["nl", "en"];
 fileinto "Translated";
 stop;
 }

https://raw.githubusercontent.com/dovecot/pigeonh...

9 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 9]

 Sieve External Programs July 2016

 Note that (formerly) Dutch messages are filed into the "Translated"
 folder, even when the "translator" program fails. In the following
 modified example this is prevented by using the filter action as a
 test:

 require ["vnd.dovecot.filter", "fileinto"];

 if header "content-language" "nl"
 {
 if filter "translator" ["nl", "en"]
 {
 fileinto "Translated";
 stop;
 }
 }

 This way, messages only end up in the "Translated" folder when
 translation was actually successful.

10.4. Example 4

 The following example determines whether the user is on vacation by
 querying an external source. The vacation message is obtained from
 the external source as well. The program that queries the external
 source is called "onvacation" and it has one argument: the localpart
 of the recipient address. The execute action is used as a test,
 which will evaluate to "true" when the user is determined to be on
 vacation. This means that the external program "onvacation" exits
 with a failure when the user is not on vacation. Of course, a
 vacation response is also not sent when the "onvacation" program
 truly fails somehow.

 require ["vnd.dovecot.execute", "vacation", "variables",
 "envelope"];

 if envelope :localpart :matches "to" "*"
 {
 set "recipient" "${1}";
 }

 if execute :output "vacation_message" "onvacation" "${recipient}"
 {
 vacation "${vacation_message}";
 }

https://raw.githubusercontent.com/dovecot/pigeonh...

10 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 10]

 Sieve External Programs July 2016

11. Security Considerations

 Allowing users to execute programs external to the Sieve filter can
 be a significant security risk, therefore the extensions presented in
 this specification must be implemented with great care. The external
 programs should execute with no more privileges than needed.

 Particularly the arguments passed to the external programs (see
 Section 4) need to be handled with scrutiny. The external programs
 need to check the arguments for validity and SHOULD NOT pass these to
 system tools directly, as this may introduce the possibility of
 various kinds of insertion attacks. External programs that work with
 message content or string input from the Sieve script may have
 similar security concerns.

 Unlike the Sieve interpreter itself, an external program can easily
 consume a large amount of resources if not implemented carefully.
 This can be triggered by coincidence or intentionally by an attacker.
 Therefore, the amount of resources available to the external programs
 SHOULD be limited appropriately. For one, external programs MUST NOT
 be allowed to execute indefinitely.

 For improved security, implementations MAY restrict the use of this
 extension to administrator-controlled global Sieve scripts. In such
 setups, the external programs are never called directly from the
 user's personal script. For example, using the "include" extension
 [INCLUDE], the user's personal script can include global scripts that
 contain the actual external program invocations. This both abstracts
 the details of external program invocation from the user's view and
 it limits access to external programs to whatever the administrator
 defines.

12. References

12.1. Normative References

 [KEYWORDS]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [NET-UNICODE]
 Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, March 2008.

 [RFC3894] Degener, J., "Sieve Extension: Copying Without Side
 Effects", RFC 3894, October 2004.

https://raw.githubusercontent.com/dovecot/pigeonh...

11 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 11]

 Sieve External Programs July 2016

 [SIEVE] Guenther, P. and T. Showalter, "Sieve: An Email Filtering
 Language", RFC 5228, January 2008.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [VARIABLES]
 Homme, K., "Sieve Email Filtering: Variables Extension",
 RFC 5229, January 2008.

12.2. Informative References

 [DSN] Moore, K. and G. Vaudreuil, "An Extensible Message Format
 for Delivery Status Notifications", RFC 3464, January
 2003.

 [INCLUDE] Daboo, C. and A. Stone, "Sieve Email Filtering: Include
 Extension", RFC 6609, May 2012.

 [MDN] Hansen, T. and G. Vaudreuil, "Message Disposition
 Notification", RFC 3798, May 2004.

 [RFC5429] Stone, A., "Sieve Email Filtering: Reject and Extended
 Reject Extensions", RFC 5429, March 2009.

 [SUBADDRESS]
 Murchison, K., "Sieve Email Filtering -- Subaddress
 Extension", RFC 3598, September 2003.

Author's Address

 Stephan Bosch
 Enschede
 NL

 Email: stephan@rename-it.nl

https://raw.githubusercontent.com/dovecot/pigeonh...

12 di 13 07/12/2017 17:37

Bosch Expires January 8, 2017 [Page 12]

https://raw.githubusercontent.com/dovecot/pigeonh...

13 di 13 07/12/2017 17:37

